Zastosowanie pyłu bazaltowego, jako substytutu piasku w zaprawie i betonie cementowym

Magdalena Dobiszewska1
1Katedra Mechaniki Konstrukcji, Wydział Budownictwa, Architektury i Inżynierii Środowiska, Uniwersytet Technologiczno-Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy

© 2016 Budownictwo i Architektura. Publikacja na licencji Creative Commons Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)

Cytowanie: Budownictwo i Architektura, 15(4) (2016) 075-085, ISSN 1899-0665, DOI: 10.24358/Bud-Arch_16_154_08

Historia:
Opublikowano: 01-12-2016

Streszczenie:

W pracy przedstawiono wyniki badań dotyczących możliwości zastosowania odpadowego pyłu bazaltowego do produkcji zapraw oraz betonów cementowych. Wykorzystane w badaniach pyły stanowią odpad powstający podczas obróbki kruszywa stosowanego do produkcji mas mineralno-asfaltowych (MMA). Utylizacja tych odpadów stanowi obecnie duży problem w wielu wytwórniach MMA. Celem określenia wpływu dodatku pyłu bazaltowego na wybrane właściwości zapraw przeprowadzono badania wytrzymałości na zginanie i ściskanie po 2, 28 i 56 dniach dojrzewania próbek, określono mrozoodporność zapraw a także zdolność do kapilarnego podciągania wody, nasiąkliwość oraz współczynnik rozmiękania zapraw. Wpływ dodatku pyłu bazaltowego na parametry termoizolacyjne zapraw określono na podstawie pomiaru współczynnika przewodzenia ciepła w aparacie płytowym TCA 300. Przeprowadzone badania dotyczyły również analizy wpływu dodatku pyłu bazaltowego na wybrane właściwości betonu. W tym celu zbadano wytrzymałość betonu na ściskanie, po 28, 90 i 180 dniach oraz mrozoodporność. Odpadowy pył bazaltowy stanowił częściowy zamiennik piasku w ilości 0-30% masy piasku w przypadku zapraw oraz w ilości 0-20% masy piasku w przypadku betonów. Wyniki przeprowadzonych badań wskazują na to, że pył bazaltowy może być stosowany do produkcji zapraw i betonów cementowych, jako substytut piasku naturalnego. Zastąpienie części piasku przez pył bazaltowy wpłynie na poprawę niektórych właściwości tych materiałów oraz pozwoli na zagospodarowanie odpadu przemysłowego.

Słowa kluczowe:

odpadowy pył bazaltowy, zaprawa cementowa, beton, wytrzymałość na ściskanie, mrozoodporność


Use of basalt powder in a cementitious mortar and concrete as a substitute of sand

Abstract:

The present study shows the results of the possibility of using basalt powderin cementitious mortar and concrete. Asphalt mixture production leads to formation of significant amounts of mineral powder. It is used in a present research. Utilization of this waste is a problem in Asphalt Batch Mix Plant. Experiments were carried out to determine an influence of powder basalt on some properties of cementitious mortar. The compressive and flexural strength at 2, 28 and 56 days of curing, freeze resistance, absorptivity, capillary rise of water and softening factor were conducted. Thermal conductivity factor was determined by means of Thermal Conductivity Measuring Instrument TCA 300 to assess a thermal insulation parameters of mortars. Secondly, experiments were also carried out to determine an influence of addition of powder basalt on some properties of concrete. The compressive strength at 28, 90, 180 days of curing and freeze resistance were conducted. Cementitious mortars and concrete were prepared with powder basalt as a partial substitute of sand in amount of 0-30% and 0-20% sand mass respectively. The results show that powder basalt can be use as an effective substitute of fine \ aggregate in cementitious mortar and concrete. Use of the powder basalt as a partial substitution of sand improves some properties of cementitious mortar and concrete and anable for the management of industrial waste

Keywords:

waste powder basalt, cementitious mortar, concrete, compressive strength, freeze resistance


Literatura / References:

1. Agrawal D., Hinge P., Waghe U.P., Raut S.P. Utilization of industrial waste in construction material – A review. International Journal of Innovative Research in Science, Engineering and Technology 3(1) (2014) 8390-8397.
2. Rashad A. Cementitious materials and agricultural wastes as natural fine aggregate replacement in conventional mortar and concrete. Journal of Building Engineering 5 (2016) 119-141.
3. Neeraj J. Effect of nonpozzolanic and pozzolanic mineral admixtures on the hydration behavior of ordinary Portland cement. Construction and Building Materials 27 (2012) 39-44.
4. Alyamac K.E., Aydin A.B. Concrete properties containing fine aggregate marble powder. KSCE Journal of Civil Engineering 19(7) (2015) 2208-2216.
5. Almeida N., Branco F., de Brito J., Santos J.R. High-performance concrete with recycled stone slurry. Cement and Concrete Research 37 (2007) 210-220.
6. Dhanalaxmi C., Nirmalkumar D.K. Study on the properties of concrete with various mineral admixtures – limestone powder and marble powder (Reviev Paper). International Journal of Innovative Research in Science, Engineering and Technology 4(1) (2015) 18511-18515.
7. Bonavetti V.L., Irassar E.F. The effect of stone dust content in sand. Cement and Concrete Research 24(3) (1994) 580-590.
8. Rahhal V., Bonavetti V., Trusilewicz L., Pedrajas C., Talero R. Role of the filler on Portland cement hydration at early ages. Construcuction and Building Materials 27 (2012) 82 90.
9. Laibao L., Yunsheng Z., Wenkua Z., Zhiyong L., Lihua Z. Investigating the influence of basalt as mineral admixture on hydration and microstructure formation mechanism of cement. Construction and Building Materials 48 (2013) 434-440.
10. Soroka I., Setter N. The effect of fillers on strength of cement mortar. Cement and Concrete Research 7 (1977) 449-456.
11. Uncik S., Kmecova V. The effect of basalt powder on the properties of cement composites. Concrete and Concrete Structures Conference Procedia Engineering 65 (2013) 51 56.
12. Kmecova V., Stefunkova Z. Effect of basalt powder on workability and initial strength of cement mortar. Journal of Civil Engineering and Architectural Research 1(4) (2014) 260-267.
13. Saraya M.E.I. Study physico-chemical properties of blended cements containing fixe amount of silica fume, blast furnace slag, basalt and limestone, a comparative study. Construction and Building Materials 72 (2014) 104-112.
14. Binici H. Effect of crushed ceramic and basaltic pumice as fine aggregates on concrete mortars properties. Construction and Building Materials 21 (2007) 1191-1197.
15. Dobiszewska M., Franus W., Turbiak S. Analiza możliwości zastosowania odpadowego pyłu bazaltowego w zaprawie cementowej. Czasopismo Inżynierii Lądowej, Środowiska i Architektury Journal of Civil Engineering, Environment and Architecture JCEEA t. XXXIII z. 63 (nr 1/I/2016) 107-114.
16. Dobiszewska M., Kuziak J., Woyciechowski P., Kępniak M. Główne aspekty trwałości betonu modyfikowanego odpadowym pyłem bazaltowym z odpylania kruszyw w wytwórni MMA. Czasopismo Inżynierii Lądowej, Środowiska i Architektury Journal of Civil Engineering, Environment and Architecture JCEEA t. XXXIII z. 63 (nr 1/I/2016) 115-122.
17. Arivumangai A., Felixkala T. Strength and durability properties of granite powder concrete. Journal of Civil Engineering Research 4(2A) (2014) 1-6.
18. Celik T., Marar K. Effects of crushed stone dust on some properties of concrete. Cement and Concrete Research 26(7) (1996) 1121-1130.
19. Uchikawa H., Hanehara S., Hirao H. Influence of microstructure of the physical properties of concrete prepared by substituting mineral powder for part of fine aggregate. Cement and Concrete Research 26(1) (1996) 101-111.
20. Heikal M., El-Didamony H., Morsy M.S. Limestone-filled pozzolanic cement. Cement and Concrete Research 30 (2000) 1827-1834.