Physical modeling of a fire with the use of the Froude number

Mateusz Zimny1
1The Main School of Fire Service
https://orcid.org/0000-0002-4466-7515

© 2016 Budownictwo i Architektura. Publikacja na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Cytowanie: Budownictwo i Architektura, 18(1) (2019) 071-080, ISSN 1899-0665, DOI: 10.24358/Bud-Arch_19_181_07

Historia:
Opublikowano: 31-08-2019

Streszczenie:

Testy pożarowe w małej skali (skali modelowej) od samego początku istnienia dziedziny Inżynierii Bezpieczeństwa Pożarowego były źródłem wielu cennych informacji na temat zjawisk zachodzących podczas spalania. Przez lata wykształciło się kilka metod obliczeniowych pozwalających wyznaczyć kryteria podobieństwa pożarów w rzeczywistej i małej skali geometrycznej. Celem niniejszego artykułu jest przedstawienie metody wykonywania testów pożarowych w skali modelowej z wykorzystaniem liczby Froude’a. Omówione zostały podstawy skalowania, warunki podobieństwa, jakie muszą zostać zachowane, sposoby opisywania zjawisk pożarowych, a także metody przeliczania parametrów pożaru ze skali rzeczywistej i modelowej. Przedstawiono również przykładowe badania fizykalne z wykorzystaniem pomniejszonych modeli badawczych. W sposób szczególny podkreślono, jak ważne są tego typu eksperymenty oraz jaka odpowiedzialność spoczywa na osobach, które je przeprowadzają. Motywacją do przeprowadzenia badań jest bowiem bezpieczeństwo ludzi, którzy przebywają w budynkach z zabezpieczeniami przeciwpożarowymi opartymi na testach w skali modelowej.

Słowa kluczowe:

modelowanie fizykalne, liczba Froude’a, testy pożarowe


Physical modeling of a fire with the use of the Froude number

Abstract:

Ever since the field of Fire Safety Engineering first came into existence, small-scale (model scale) fire tests were the source of much valuable information about the phenomena occurring during combustion. Over the years, several computational methods to determine the criteria for the similarity of fires on both a real and small geometric scale have been developed. The purpose of this article is to present a method of performing fire tests on a model scale using the Froude number. The basics of scaling, similarity conditions that must be preserved, ways of describing fire phenomena, as well as methods of calculating fire parameters from the real and model scale have been discussed. An example of physical tests with the use of reduced research models is also presented. What is particularly emphasized is how important these types of experiments are and what responsibility rests with the people who carry them ouvol. The motivation to conduct research is the safety of people who reside in buildings with fire protection based on model scale test.

Keywords:

physical modelling, Froude number, fire tests


Literatura / References:

[1] Drysdale D., Fire safety by design: a framework for the future. Fire Safety Journal vol. 23, no 2, p. 113, 1994.
[2] Wegrzynski W., Sulik P., The philosophy of fire safety engineering in the shaping of civil engineering development. Bulletin of the Polish Academy of Sciences: Technical Sciences, vol. 64, no 4, p. 719–730, 2016.
[3] Cooper L.Y., Harkleroad M., Quintiere J., Rinkinen W. An experimental study of upper hot layer stratification in full-scale multiroom fire scenarios. Journal of Heat Transfer, vol. 104, no 4, p. 741, 2009.
[4] Li Y.Z., Ingason H., Lönnermark A. Runehamar Tunnel Fire Tests. Boras, 2011.
[5] Mehta S. Upholstered furniture fill scale chair tests – open flame ignition results and analysis. 2012.
[6] Węgrzyński W. Partitions and the flow of smoke in large volume buildings, Architecture, Civil Engineering, Environment, vol. 11, no 1, p. 155–164, 2019.
[7] Himoto K., Shinohara M., Sekizawa A., Takanashi K., Saiki H. A field experiment on fire spread within a group of model houses. Fire Safety Journal, vol. 96, no May 2017, p. 105–114, 2018.
[8] Krauze A., Fliszkiewicz M., Maciak T. Możliwości stosowania programów komputerowych w inżynierii bezpieczeństwa pożarowego. Bezpieczeństwo i Technika Pożarnicza, vol. 29, ed. 1, p. 47–60, 2013.
[9] Krasuski A., Pecio M. Application of an integrated risk assessment software to quantify the life safety risk in building during a fire. MATEC Web of Conferences, vol. 247, ed. 1, p. 11, 2018.
[10] Quintiere J.G. Scaling applications in fire research. Fire Safety Journal, vol. 15, ed. 1, p. 3–29, 1989.
[11] Vigne G., Węgrzyński W. Influence of variability of soot yield parameter in assessing the safe evacuation conditions in advanced modeling analysis. results of physical and numerical modeling comparison, [w:] 11th Conference on Performance-Based Codes and Fire Safety Design Methods, 2016, ed. May, p. 14.
[12] Vigne G., Gutierrez-Montes C., Cantizano A., Węgrzyński W., Rein G. Review and validation of the current smoke plume entrainment models for large-volume buildings. Fire Technology, vol. 55, ed. 3, p. 789–816, 2019.
[13] Wang X.Y., Spearpoint M.J., Fleischmann C.M. Comparison of results from large-scale and small-scale tunnel experiments. Fire Safety Journal, vol. 95, ed. August 2017, p. 135–144, 2018.
[14] Quintiere J.G. Fundamentals of fire phenomena. 2006.
[15] Zohuri B. Dimensional analysis and self-similarity methods for engineers and scientists. Springer US, 2015.
[16] Jezowiecka-Kabsch K., Szewczyk H. Fluid mechanics. Wrocław: Wrocław University of Technology Publishing House, 2001.
[17] Thomas P.H. Modelling of compartment fires, Fire Safety Journal, vol. 5, ed. 3–4, p. 181–190, 1983.
[18] Prahl J., Emmons H.W. Fire induced flow through an opening, Combustion and Flame, vol. 25, ed. C, p. 369–385, 1975.
[19] Steckler K.D., Baum H.R., Quintiere J.G. Salt water modeling of fire induced flows in a multiroom enclosure. Chemical and Physical Processes in Combustion, Fall Technical Meeting, The Eastern States Section, p. 143–149, 1985.
[20] Krasuski A., Krenski K. A-Evac: the evacuation simulator for stochastic environment. Fire Technology, 2019.
[21] Zhao G., Wang L. Using helium smoke as a surrogate of fire smoke for the study of atrium smoke filling. Journal of Fire Sciences, vol. 32, ed. 5, p. 431–447, 2014.
[22] Shanley J., i Beyler C. Horizontal vent flow modeling with helium and air. Fire Safety Science, vol. 2, p. 305–313, 1989.
[23] Yao X., Marshall A.W. Quantitative salt-water modeling of fire-induced flow. Fire Safety Journal, vol. 41, ed. 7, p. 497–508, 2006.
[24] Thomas P.H., Modelling of compartment fires. Fire Safety Journal, vol. 5, ed. 3–4, p. 181–190, 1983.
[25] Morgan H.P., De Smedt J.-C., Hot smoke tests: testing the design performance of smoke and heat ventilation systems and of impulse ventilation. International Journal on Engineering Performance-Based Fire Codes, vol. 6, ed. 1, p. 7–18, 2004.
[26] Thomas P.H., Hinkley P.L., Theobald C.R., Simms D.L. Investigations into the flow of hot gasses in roof venting. ed. 7. BRE, 1963.
[27] Wȩgrzyński W., Konecki M. Influence of the fire location and the size of a compartment on the heat and smoke flow out of the compartment, [w:] AIP Conference Proceedings, 2018, vol. 1922, ed. January, p. 12.
[28] Li Y.Z., Lei B., Ingason H. Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires. Fire Safety Journal, vol. 45, ed. 6–8, p. 361–370, 2010.
[29] Kim D.H., Park W.H. Experiment by using reduced scale models for the fire safety of a rescue station in very long rail tunnel in Korea. Tunnelling and Underground Space Technology, vol. 21, ed. 3–4, p. 303, 2006.
[30] Lönnermark A., Lindström J., Li Y.Z. Model-scale metro car fire tests. Model-scale metro car fire tests of Sweden. SP Technical Research Institute of Sweden, 2011.
[31] Quintiere J., Mccaffrey J., Kashiwagi T. A scaling study of a corridor subject to a room fire. Combustion Science and Technology, vol. 18, ed. 1–2, p. 1–19, 1978.
[32] Arini D., Pancawardani F., Santoso M.A., Sugiarto B., Nugroho Y.S. Froude modelling of fire phenomena: observation of fire-induced smoke movement in basement structure for firefighting purpose. Procedia Engineering, vol. 170, p. 182–188, 2017.
[33] Li Y.Z., Ingason H. Model scale tunnel fire tests with automatic sprinkler. Fire Safety Journal, vol. 61, p. 298–313, 2013.
[34] Li Y.Z., Lei B., Ingason H. Scale modeling and numerical simulation of smoke control for rescue stations in long railway tunnels. Journal of Fire Protection Engineering, vol. 22, ed. 2, p. 101–131, 2012.
[35] Ingason H., Li Y.Z. Model scale tunnel fire tests with longitudinal ventilation. Fire Safety Journal, vol. 45, ed. 6–8, p. 371–384, 2010.
[36] Dabiri D. Digital particle image thermometry/velocimetry: A review. Experiments in Fluids, vol. 46, ed. 2, p. 191–241, 2009.