An analysis of the resistance of an extended end-plate beam-to-beam connection subjected to tension in fire conditions

Alina Słowikowska1, Łukasz Polus2
1Institute of Structural Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology
2Institute of Structural Engineering, Faculty of Civil and Environmental Engineering, Poznan University of Technology
https://orcid.org/0000-0002-1005-9239

© 2016 Budownictwo i Architektura. Publikacja na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Cytowanie: Budownictwo i Architektura, 18(1) (2019) 081-088, ISSN 1899-0665, DOI: 10.24358/Bud-Arch_19_181_08

Historia:
Opublikowano: 31-08-2019

Streszczenie:

This paper presents an analysis of the fire resistance of a steel joint subject-ed to tension. The authors of this article used prescriptive rules and simple calculation models to present an impact of the value of the load on the fire resistance of the connection. Designers often evaluate the critical temperature and fire resistance time of steel elements. However, they neglect the evaluation of the above-mentioned values for steel connections. In this article a simple engineering method was used to calculate the fire resistance of the joint.

Słowa kluczowe:

beam-to-beam connection, fire resistance, steel joint, critical temperature


An analysis of the resistance of an extended end-plate beam-to-beam connection subjected to tension in fire conditions

Abstract:

This paper presents an analysis of the fire resistance of a steel joint subject-ed to tension. The authors of this article used prescriptive rules and simple calculation models to present an impact of the value of the load on the fire resistance of the connection. Designers often evaluate the critical temperature and fire resistance time of steel elements. However, they neglect the evaluation of the above-mentioned values for steel connections. In this article a simple engineering method was used to calculate the fire resistance of the joint.

Keywords:

beam-to-beam connection, fire resistance, steel joint, critical temperature


Literatura / References:

[1] Franssen J.M., Real P.V. Fire design of steel structures. Eurocode 1: Actions on structures, Part 1-2: Actions on structures exposed to fire, Eurocode 3: Design of steel structures, Part 1- 2: Structural fire design. ECCS, 2010.
[2] European Committee for Standardization. EN 1993-1-2 Eurocode 3: Design of steel structures – Part 1-2: General rules – Structural fire design. Brussels, 2005.
[3] Maślak M. Trwałość pożarowa stalowych konstrukcji prętowych. Wydawnictwo Politechniki Krakowskiej, 2009 [in Polish].
[4] Gwóźdź M., Suchodoła M. Bezpieczeństwo pożarowe budowlanych konstrukcji metalowych. Wydawnictwo Politechniki Krakowskiej, 2016 [in Polish].
[5] Turkowski P., Sulik P. Projektowanie konstrukcji stalowych z uwagi na warunki pożarowe według Eurokodu 3, Warszawa, Instytut Techniki Budowlanej, 2015 [in Polish].
[6] Kurzawa Z., Polus Ł., Szumigała M. Stany graniczne i odporność pożarowa elementów stalowych według Eurokodu 3. Wydawnictwo Politechniki Poznańskiej, 2016 [in Polish].
[7] Franssen J. M., Brauwers L. Numerical determination of 3D temperature fields in steel joints. Second International Workshop: Structures in Fire, Christchurch, New Zealand, 2002.
[8] Wald F., Simoes da Silva L., Moore D., Santiago A. Experimental behavior of steel joints under natural fire. ECCS – AISC Workshop: Connections in Steel Structures, Amsterdam, The Netherlands, 2004.
[9] Malendowski M., Burgess I., Glema A. Robustness in fire of a new type of beam-to-column connection, [in:] ce/papers, Special Issue: Proceedings of Eurosteel 2017, Ernst & Sohn, Volume 1, Issue 2-3, pp. 550-559, 2017, doi: 10.1002/cepa.92.
[10] Maślak M., Litwin M. Flexibility of beam-to-column steel joint under fire temperature. Inżynieria i Budownictwo 66(8) (2010) 441–454 [in Polish].
[11] Maślak M., Pazdanowski M., Snela M. Moment-rotation characteristics for flexible beam-to-column steel joint exposed to fire. Journal of Civil Engineering and Architecture 9 (2015) 257–261, doi: 10.17265/1934-7359/2015.03.002.
[12] Maślak M., Pazdanowski M., Snela M., Numerically-based quantification of internal forces generated in a steel frame structure with flexible joints when exposed to a fire, [in:] Advances in Mechanics: Theoretical. Computational and Interdisciplinary Issues – 3rd Polish Congress of Mechanics, PCM 2015 and 21st International Conference on Computer Methods in Mechanics. (ed. Kleiber M. et al.). CRC Press, pp. 389-392, London 2016.
[13] Maślak M., Pazdanowski M., Snela M., Redistribution of internal forces generated in a steel frame structure with flexible joints when exposed to a fire, [in:] Recent Progress in Steel and Composite Structures – Proceedings of the 13th International Conference on Metal Structures (ICMS2016, Zielona Góra, Poland, 15-17 June 2016). (ed. Giżejowski M. et al.). CRC Press,pp. 315-322 London 2016.
[14] Simoes da Silva L., Santiago A., Real P.V. Post-limit stiffness and ductility of end-plate beam-to-column steel joints. Computers & Structures 80 (2002) 515–531, doi: 10.1016/S0045-7949(02)00014-7.
[15] Block F., Burgess I., Davison B., Plank R. The development of a component-based connection element for endplate connections in fire. Fire Safety Journal 42(6-7) (2007) 498–506, doi: 10.1016/j.firesaf.2007.01.008.
[16] European Committee for Standardization. EN 1991-1-2 Eurocode 1: Actions on structures – Part 1-2: General actions – Actions on structures exposed to fire. Brussels, 2002.
[17] Szumigała M., Polus Ł. A comparison of the rise of the temperature of an unprotected steel column subjected to the standard fire curve ISO 834 and to a natural fire model in the office. Engineering Transactions 63(2) (2015) 157–170.
[18] Szumigała M., Polus Ł. Fire resistance of the ceiling in the old tenement house. Procedia Engineering 195 (2017) 178–182, doi: 10.1016/j.proeng.2017.04.541.
[19] Maślak M., Suchodoła M., Woźniczka P. Temperature distribution in a steel beam-to-column joint when exposed to fire. Part 1: End-plate joint. Journal of Civil Engineering, Environment and Architecture 65(2) (2018) 25–34, doi: 10.7862/rb.2018.21.
[20] Jaspart J. P., Weynand K. Design of joints in steel and composite structures, Eurocode 3: Design of steel structures, Part 1-8: Design of joints, Eurocode 4: Design of composite steel and concrete structures. ECCS, 2016.
[21] European Committee for Standardization. EN 1993-1-8 Eurocode 3: Design of steel structures – Part 1-8: Design of joints. Brussels, 2005.