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Abstract: The paper reviews nowadays problems and issues of wind engineering and 
aerodynamics of building structures. The article mainly focuses on aerodynamics of building 
structures, shortly characterizing theoretical bases, which one must take into account when 
assuming wind loads. The three different approaches of collecting information in the field of 
wind loads are described: in-situ measurements, wind tunnel tests and numerical simulations. 
Also, a review of the most important contemporary issues of wind engineering is presented. 
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1. Introduction 

Wind loads became an object of special attention in the 60's and 70's of the XX century. 
This growing interest was mainly induced by a collapse of Tacoma Narrows Bridge and 
Ferrybridge Cooling Towers. The first event held in 1940 in US (Fig. 1a). The Tacoma 
Narrows Bridge – a suspension bridge of the large span and slender cross-section of the deck – 
suffered vibrations caused by the wind action. The wind speed was not extremely high, but its 
action and uncommon structure of the bridge led to uncontrolled vibrations. It was one of the 
first documented collapses caused by so-called flexural-torsional flutter. The second disaster 
took place in 1965 in UK (Fig. 1b). The cluster compound of eight cooling towers of large 
dimensions stood one by one in very close distances. The acceleration of the flow between 
objects and vortices shedding from the windward cooling towers were not considered during 
the design process. Additional wind loads were produced, and it was the direct cause of the 
total collapse of the three cooling towers and of serious damages of the other five.  

a)    b)  
Fig. 1. Collapses of: a) Tacoma Narrows ((http://www.ketchum.org/bridgecollapse.html), b) cooling towers in 

Ferrybridge (http://www.knottingley.org/history/tales_and_events.htm#Cooling%20Towers) 
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Moreover, serious large hurricanes, cyclones and tornadoes brought many fatalities 
and destroyed huge areas of land and land infrastructure.  

All these aspects together gave rise to investigations in the field of wind engineering 
and structural aerodynamics. 

Wind engineering is a wider concept than aerodynamics, and covers, among others, 
the following fields of science: meteorology, structural mechanics, wind energy, probability 
theory, statistics, fluid dynamics, theory of structural safety and reliability, wind hazards 
(risk evaluation), medicine (comfort/discomfort). The very detailed definition of the wind 
engineering as the multi-disciplinary science was given by Cermak (1975). In more general 
division, based on Cermak's definition, the main topics of wind engineering are: winds and 
their characteristic in the atmospheric boundary layer (atmospheric circulation, wind types, 
structure of strong winds, extreme winds, topography and orography influences on wind 
structure), aerodynamics of buildings and structures (wind actions on structures, wind-
structure interactions, aeroelastic phenomena, aerodynamic interference, wind and rain 
induced vibrations, structural response to wind actions safety and reliability of structures, 
damping), wind influence on people (pedestrians comfort, comfort of people in buildings, 
human reactions to wind-induced vibrations), environmental effects of wind (pollutant 
dispersion, sand or snow transport, waves on seas), wind power (wind farms and wind 
turbines), natural disasters (extreme winds risk assessment, damage reduction), normaliza-
tion (regulations, standards, codes, design guidelines). 

This paper presents frames of the basic knowledge which engineers must have to respon-
sibly assume wind actions on structures. Next, the presentation of three experimental methods 
allowing to gather data about wind actions, with examples of their applications, is enclosed. 
Contemporary problems faced by wind engineering are described at the end of the paper. 

2. Base knowledge 

2.1. Wind structure in atmospheric boundary layer (ABL) 
The atmospheric boundary layer can be distinguish close to the Earth’s surface. The 

structure of the wind in the ABL – the space, time and frequency characteristics of the wind 
speed – must be determined. Wind speed is a stochastic function of time and space, and can be 
expressed as the sum of the mean value – U  (characterizing the static action) and fluctuation 
around the mean – U (characterizing the dynamic action), according to the equation: 

     , , , , , , , ,i i iU x y z t U x y z U x y z t   (1) 

where: i = x, y, z are respectively: horizontal component along the mean wind direction, 
second horizontal component perpendicular to the first one, and vertical component, t is 
time. The respective vector components of the wind speed can be alternatively described by 
letters: u, v and w. Every component is also the sum of the mean value and fluctuation: 
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To describe wind speed, it is necessary to determine mean speed, and its changes 
along the height. In the ABL the vertical changes of the mean wind speed take place. 
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To describe wind speed, it is necessary to determine mean speed, and its changes 
along the height. In the ABL the vertical changes of the mean wind speed take place. 

The speed increases with the height above the ground, until it reaches the gradient wind 
speed Ugrad, at the height zgrad. The variation of the mean wind speed with height can be 
expressed using mathematical formulas known as vertical wind profiles. There are two 
groups of formulas describing the wind speed profile: theoretically developed logarithmic 
equation (log-law profile) and power-law equation. The best known and firstly defined (by 
Alan Davenport), is the power-law formula, which illustrate wind speed changes over 
different terrain types (Davenport, 1960, 1965). The original values and formula given by 
Davenport are presented in Fig. 2, whereas profiles recommended by Eurocode (2008) are 
shown in Fig. 3a.  
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Fig. 2. Wind profiles defined by Davenport over different terrains 

Turbulent character of wind must be defined if a wind action is considered. The fol-
lowing characteristics of the fluctuating part (turbulence) should be given: intensity and 
scales of turbulence, peak factors, the correlation functions (in the time domain) and power 
spectral density functions (in the frequency domain). Intensity of turbulence, in general, 
defines time changes of the wind speed around the mean value. Turbulence length scale is a 
measure of the size of gusts of the wind speed in space and represents the distance in which 
the process is correlated. Examples of that functions are presented in Fig. 3b, c. Correlation 
functions give the detailed description of the wind structure, as a space-time stochastic 
process in the time domain. On the basis of correlation functions one can get additional 
information of the wind structure in the frequency domain. Applying Fourier transforms to 
respective correlations we can get power spectral density functions (PSD). There are several 
practical PSD functions in wind engineering elaborated on the basis of local measurements. 
An example of PSD function is presented in Fig. 4. 

Characteristics of the wind speed can be described differently depending on civil en-
gineering standards and codes which consider wind actions on structures. Among the most 
important standards in this field are: 1) Eurocode 1. Actions on structures – Part 1–4: 
General actions – wind actions. 2) ASCE – American Society of Civil Engineers. Minimum 
design loads for buildings and other structures. 3) AS/NZS – Structural design actions – 
Part 2: Wind actions. Australian/New Zealand Standard. 4) AIJ – Architectural Institute of 
Japan. RLB recommendations for loads on buildings. Tokyo, Japan. 5) CNS – Load code 
for the design of building structures, China National Standard. 7) ISO – ISO. 4354. Wind 
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actions on structures. Switzerland: International Organization for Standardization. 7) ESDU 
– Engineering Science Data Unit (this is not a code, but it contains many calculation 
procedures developed on the basis of in-situ and model measurements, it consists of several 
items). 

 
Fig. 3. Wind characteristics according to Eurocode (2008): a) mean wind speed profiles, log-law formula (on 

the right – flat open terrain, on the left – big city center, b) turbulence intensity profiles (on the right – 
big city center, on the left – flat open terrain), c) turbulence length scale profiles (on the right – flat 
open terrain, on the left – big city center) 

 
Fig. 4. Power spectral density (PSD) functions of component u of wind speed according to various formulas 

2.2. Flow around bodies of different shapes 
Additionally to the wind characteristics, the character of flow in the close proximity of 

the objects of different shapes must be considered. In order to explain the flow phenomena 
that occurs in the vicinity of the body, let’s consider the flow around a flat wall (Fig. 5). If 
the air flows around a flat, smooth surface, then in the effect of the viscous forces the 
movement slows down in its immediate vicinity. The area in which this phenomenon occurs 
is called the boundary layer. Within it, the speed varies from 0 at the surface, to the value in 
the undisturbed flow. The thickness of the boundary layer, i.e. the distance from the body 
surface to the height of undisturbed flow, ranges from a few millimeters to tens of 
centimeters (or to several hundred meters in ABL). The thickness of the boundary layer 
increases with the distance from the first contact area of the air and the obstacle in the flow 
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direction. The thickness of the boundary layer  depends on the size of the body, its surface 
roughness, air viscosity, flow velocity and the nature of the flow itself, which can be laminar 
or turbulent. 

 
Fig. 5. Formation of boundary layer 

Forces working in the boundary layer are: the inertial force resulting from the mass of 
the flow and the viscosity force that slows down the flow what causes the formation of a 
force tangential to the surface, opposite to the flow direction. We may also distinguish 
forces derived from the pressure, slowing or accelerating the flow depending on the 
pressure increase or decrease in the flow direction. The resultant effect of these forces may 
cause a slowdown in the flow, and consequently the possibility of the return movement 
(reversed flow), known as the boundary layer separation (detachment). The point on the 
surface to which the flow is returned is the point of separation (detachment) of the boundary 
layer. Sometimes also the term ‘separation bubble’ is used since the detachment occurs at a 
some length of the body. Beyond the point of separation, the reversed flow in a form of a 
vortex appears. The location of the area at the body surface, where the separation occurs, 
depends mainly on the shape and surface roughness of the body, velocity and the nature of 
the flow, which can be laminar or turbulent. Vortices formed in the flow can cause large 
suction on the surface of the object, of the largest value close to the point of detachment. 
The shape of the body is crucial for the flow features in its proximity.  

If the object has a streamlined cross-section (e.g. airfoils), the air flow adapts to its 
shape. This kind of sections are used in aviation, or in wind energy engineering as a rotor 
blades.  

The flow around bluff-bodies with sharp edges of a compact cross-sections and cross-
sections elongated in a direction perpendicular to flow depends on Reynolds number – Re. 
This dimensionless value represents the ratio of the inertia forces to the viscosity forces. In 
the field of civil engineering, high values of Re will be taken into account, like Re > 105. In 
the case of bluff-bodies with sharp edges, at Re > 1000, the turbulent wake region (limited 
by smaller vortices) is formed. Shear layers separate the streamline flow area (no vortices) 
from the highly turbulent vortex area called aerodynamic wake (Fig. 6a). 

In the case of bluff-bodies with sharp edges elongated in flow direction, boundary 
layer separates on the windward edges, then at side walls reattaches to the surface (so-called 
reattachment of the boundary layer), and next at leeward edges separates again to form a 
narrower wake region. The flow depends not only on the windward surface, but also on the 
dimensions of the object along the flow direction (Fig. 6b).  

The flow around bluff-bodies of oval sections strongly depends on Re. For different 
ranges of Re, vortex shedding has different character from symmetrical shedding of two 
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vortices, periodical shedding to quasi-periodical vortex shedding. For example, when Re rises 
above 3.5·106 (super-critical range of Re) flow is completely turbulent, while vortex 
shedding exhibits a quasi-regularity (Fig. 6c). 

a) 

 

b) 

 

c) 

 
Fig. 6. Flow over different simple cross-sections in dependence on Re, a) sharp edged compact or elongated in 

across-wind direction, b) sharp edged elongated along-wind direction, c) oval 

The Navier-Stokes equations describe movement of the fluid (in our case – wind) with 
a use of the principle of mass and momentum conservation. The change of momentum of 
the fluid element depends on the external pressure and internal viscous forces in the fluid, 
and it can be represented by three components u, v, w in the following form: 
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Using notations of pressure gradient (grad), divergence (div), Lagrange operator ( 2 ) 
and a material derivative /D Dt , Navier-Stokes equations take the following form: 

2D 1 grad graddiv
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Taking into account several assumptions, that:  
1 The fluid is incompressible (the density is constant or its changes are negligible); 
2 Fluid is inviscid, so its viscosity is omitted; 
3 Flow is stationary, i.e. the derivatives of the velocity components with respect to 

time are equal to 0; 
4 The external forces are ignored;  

the Bernoulli equation for the stationary, inviscid and incompressible flow will be obtained: 

1 gradd p
dt 

 
u  (5) 

After integration: 

21
2

p u const   (6) 

where: u – fluid (wind) speed, 0.5u2 – dynamic pressure, p – static pressure.  
On the basis of the Bernoulli equation, the pressure (positive pressure) or suction 

(negative pressure) – the aerodynamic loads acting on the body placed in the air flow which 
is perpendicular to its surface, can be defined. The pressure on the outer walls of the objects 
is mainly determined experimentally. It is most convenient to use dimensionless values of 
pressure coefficients, which are independent on the wind velocity. In practice, the 
dimensionless coefficient is determined according to the relationship: 

i
p

p ppC
q q



 


   (7) 

where: pi – surface pressure at point ‘i’, p and q – static pressure and wind speed pressure 
in undisturbed flow in the front of the object, 20.5q u  . The pressure coefficients are 
difficult to define for the real structure surfaces (in full-scale experiments), due to the obvious 
reason – costs. Most of the studies are done in the model scale, usually in wind tunnels.  

2.3. Aeroelastic phenomena 
Any engineering structure can vibrate due to the action of:  
 Inertia forces; 
 Elasticity forces;  
 Aerodynamic forces. 
Dynamic phenomena connected with wind action are:  
1. Forced vibrations – occur when the time varying external force (independent from 

the vibration of the structure) is applied. The example of such behaviour is the dy-
namic response of the structure.  

2. Self-excited vibrations – the force disappears when the vibrations disappear. The 
vibrations are controlled by the vibration system itself – the feedback appears. Ex-
amples of such vibrations are flutter, vortex excitation, galloping. 

The forced, damped vibrations of the given mass are described by the general motion 
equation: 

 0 sin wmy cy ky P t    (8) 
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Dynamic features of the structure must be taken into account because dynamic wind 
action can cause resonance or at least vibrations of unaccepted level. Taking into account 
dynamic action of the wind and dynamic response of any structure which can vibrate in the 
wind field the following various wind actions can appear: 

1. Dynamic action of gusts.  
The wind gusts can cause along-wind vibrations of the structure. Fig. 7 illustrates 

structure's response to wind gusts. The approach was originally developed by Alan 
Davenport (e.g. 1960, 1965) and currently is used in several wind codes. 

 
Fig. 7. Resonant (R) and background (B) parts of structure’s response, according to Davenport's approach 

2. Vortex excitation.  
Von Kármán proved in 1912 that, the perfect periodical vortex street appears in case 

of circular cylinders in subcritical range of Reynolds number. When the frequency fv of 
vortex shedding is equal or near to the i-th natural frequency of the structure vibrations fi – 
the possibility of resonance may occur. The phenomenon is called lock-in and means 
synchronization of frequencies of vortex shedding and structure vibrations. Classical vortex 
street and changes of the frequency and the amplitude of vibrations with the wind speed, 
explaining the lock-in phenomenon are shown in Fig. 8.  

a) 

 

b) 

 
Fig. 8. a) Von Kármán vortex street, b) lock-in; frequency (f) dependence on wind speed (u); an increase of 

amplitude of lateral vibrations, Y – lateral displacement, D – diameter, ucr – critical wind speed 
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3. Galloping.  
A precondition for the galloping is an initial movement of the structure of small stiff-

ness, caused e.g. by detachment of vortices, or by gusts. Most frequently, this phenomenon 
occurs on overhead power lines, guys of masts, cables of cable-stayed bridges. It is more 
likely that the galloping will occur if there is ice on a structure, or because of rain, which 
changes the aerodynamic properties of the cross-section. A scheme of the forces acting on 
the system during galloping is shown in Fig. 9a. 

4. Flutter. 
The phenomenon of flutter is generated due to the feedback between vibrations in the 

direction of different degrees of freedom. In the classic flutter problem which appears for 
aircraft wings or bridges, the feedback occurs between vertical and torsional vibrations. 
Such system with two degrees of freedom is shown in Fig. 9b.  

Summing up, to assume realistic wind action on engineering structures, all above men-
tioned aspects (and many more) should be considered. 

a) 

 

b) 

 

Fig. 9. a) Scheme of galloping, b) scheme of flutter of the system with two degrees of freedom 

3. Experimental methods 

When the wind action is analysed, the level of uncertainty is high. To maximize the 
accuracy, several parameters of wind load must be determined with care. There are three 
ways which allow to determine features describing wind actions. These are: 

1. In-situ (full-scale, real scale) measurements.  
2. Model scale measurements. 
3. Numerical simulations. 

3.1. Full-scale tests  
Full-scale tests are obviously the most powerful tool in estimation of wind actions. 

Test could be performed on already erected objects, and thus could provide a database for 
designers of future structures. This leads to the basic limitation of full-scale tests which 
results are sometimes impossible to implement in new design or already erected structures. 
The second limitation is connected to the difficulty of proper instrumentation of the 
structure. The third, and probably the most important limitation, is a huge cost of measure-
ment installation. Currently, there are limited data gathered from the full-scale experiments. 
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The majority of results were derived from long-lasting monitoring of bridges, high-rise 
buildings and roofs of large spans, and also from meteorological measurements of wind 
field over different terrains. These tests supply data about wind flow around objects of 
different shapes, wind pressure on outer surfaces of objects or response of the structure to 
wind action which could be described by vibration accelerations. 

To give the better view on various wind engineering full-scale tests, performed during 
recent years, some examples are enclosed below. The wind features were measured by Roth 
(2000) who analysed data about wind turbulence in urban areas. Li et al. (2010) described 
wind characteristics for urban terrain in Beijing, whereas He et al. (2013) gave description 
of the wind field in Hong Kong. Wind characteristics for conditions of open terrain were 
estimated by Shiau and Chen (2002) and Tieleman (2008). With the development of 
measurement techniques, wind engineering also engage more and more modern and 
advanced methods. Tamura et al. (2001, 2007) used Doppler sodars to measure wind 
characteristics over terrain of different roughness. Dominguez et al. (2013), Gonzalo et al. 
(2014) developed the measurement system based on particle tracking in the air. 

Data from full-scale tests of buildings are rather limited. Dalgliesh (1975), Dalgliesh 
et al. (1983) was one of the pioneers in measurements of high-rise buildings. He made test 
of the 57-storey building in Toronto, measuring surface wind pressure and vibration 
response of the building.  

There are objects which were measured in details in the full-scale as well as in the 
model-scale in wind tunnels through the years. Moreover, data obtained for these buildings 
are the validation base for several numerical methods. These are: SILSOE Building erected 
1986/1987, of dimensions: D = 24 m, B = 12.9 m, H = 5.3 m (e.g. Richardson et al., 1997) 
and SILSOE Cube of dimensions: D = B = H = 6 m (e.g. Richards and Hoxey, 2008, 2012); 
CAARC – Commonwealth Advisory Aeronautical Research Council of dimensions: 
D = 45.72 m, B = 30.48 m, H = 182.88 m (e.g. Melbourne, 1980, Goliger and Milford, 
1988, Huang et al., 2007); TTB – Texas Tech Building of dimensions: D = 13.7 m, 
B = 9.1 m, H = 4 m. (e.g. Cochran and Cermak, 1992, Endo et al., 2006). 

Recent years brought more data from long-term monitoring of the wind action and the 
response of large structures. The results concern wind field features around structures, 
surface wind pressures, displacements, velocities or accelerations of objects. Many tests are 
carried out during extreme winds like typhoons, cyclones, tornadoes, etc. For several 
buildings (among others: Di Wang Tower, China, H = 325 m; Central Plaza Tower, Hong 
Kong, H = 374 m; Guangzhou International Finance Centre, China, H = 432 m; Jin Mao 
Buiding, China, H = 420,5 m; Canton Tower, China, H = 610 m; three buildings in 
Chicago) the results of extreme wind action were presented (e.g. Li et al., 2005, 2008, 
Li and Wu 2007, Fu et al., 2012, Guo et al., 2012, Bashor et al., 2012).  

3.2. Model-scale tests 
From the point of view of costs and accuracy, the reasonable alternative to full-scale 

tests is model-scale testing. The large advantage of such tests is that they are usually carried 
out when the engineering structure is still in the design stage. Such experiments are 
performed in water channels or mainly in wind tunnels. First, the scale model of the real 
structure is created and next it is placed in the special tunnel where artificial wind flow is 
created with the use of fans.  

If the tests in the tunnel are intended to refer to a particular real object, it is necessary 
to perform appropriate model scaling and flow scaling. Unfortunately, a scaling process 
raises a number of problems. If one has to determine the external wind pressure on the 
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The majority of results were derived from long-lasting monitoring of bridges, high-rise 
buildings and roofs of large spans, and also from meteorological measurements of wind 
field over different terrains. These tests supply data about wind flow around objects of 
different shapes, wind pressure on outer surfaces of objects or response of the structure to 
wind action which could be described by vibration accelerations. 

To give the better view on various wind engineering full-scale tests, performed during 
recent years, some examples are enclosed below. The wind features were measured by Roth 
(2000) who analysed data about wind turbulence in urban areas. Li et al. (2010) described 
wind characteristics for urban terrain in Beijing, whereas He et al. (2013) gave description 
of the wind field in Hong Kong. Wind characteristics for conditions of open terrain were 
estimated by Shiau and Chen (2002) and Tieleman (2008). With the development of 
measurement techniques, wind engineering also engage more and more modern and 
advanced methods. Tamura et al. (2001, 2007) used Doppler sodars to measure wind 
characteristics over terrain of different roughness. Dominguez et al. (2013), Gonzalo et al. 
(2014) developed the measurement system based on particle tracking in the air. 

Data from full-scale tests of buildings are rather limited. Dalgliesh (1975), Dalgliesh 
et al. (1983) was one of the pioneers in measurements of high-rise buildings. He made test 
of the 57-storey building in Toronto, measuring surface wind pressure and vibration 
response of the building.  

There are objects which were measured in details in the full-scale as well as in the 
model-scale in wind tunnels through the years. Moreover, data obtained for these buildings 
are the validation base for several numerical methods. These are: SILSOE Building erected 
1986/1987, of dimensions: D = 24 m, B = 12.9 m, H = 5.3 m (e.g. Richardson et al., 1997) 
and SILSOE Cube of dimensions: D = B = H = 6 m (e.g. Richards and Hoxey, 2008, 2012); 
CAARC – Commonwealth Advisory Aeronautical Research Council of dimensions: 
D = 45.72 m, B = 30.48 m, H = 182.88 m (e.g. Melbourne, 1980, Goliger and Milford, 
1988, Huang et al., 2007); TTB – Texas Tech Building of dimensions: D = 13.7 m, 
B = 9.1 m, H = 4 m. (e.g. Cochran and Cermak, 1992, Endo et al., 2006). 

Recent years brought more data from long-term monitoring of the wind action and the 
response of large structures. The results concern wind field features around structures, 
surface wind pressures, displacements, velocities or accelerations of objects. Many tests are 
carried out during extreme winds like typhoons, cyclones, tornadoes, etc. For several 
buildings (among others: Di Wang Tower, China, H = 325 m; Central Plaza Tower, Hong 
Kong, H = 374 m; Guangzhou International Finance Centre, China, H = 432 m; Jin Mao 
Buiding, China, H = 420,5 m; Canton Tower, China, H = 610 m; three buildings in 
Chicago) the results of extreme wind action were presented (e.g. Li et al., 2005, 2008, 
Li and Wu 2007, Fu et al., 2012, Guo et al., 2012, Bashor et al., 2012).  

3.2. Model-scale tests 
From the point of view of costs and accuracy, the reasonable alternative to full-scale 

tests is model-scale testing. The large advantage of such tests is that they are usually carried 
out when the engineering structure is still in the design stage. Such experiments are 
performed in water channels or mainly in wind tunnels. First, the scale model of the real 
structure is created and next it is placed in the special tunnel where artificial wind flow is 
created with the use of fans.  

If the tests in the tunnel are intended to refer to a particular real object, it is necessary 
to perform appropriate model scaling and flow scaling. Unfortunately, a scaling process 
raises a number of problems. If one has to determine the external wind pressure on the 

object, then it is sufficient to scale the object's dimensions and mount the model rigidly in 
the tunnel. When data about structural response of the object are needed (e.g. structure 
vibrations induced by the wind load), the simple scaling of geometry is insufficient and 
appropriate scaling of stiffness and weight distribution along the height/span is necessary. 
The second scaling problem, often even more difficult to overcome, is the wind structure 
scaling, so that the boundary layer generated in the tunnel corresponds to the atmospheric 
boundary layer occurring in the reality. Appropriate (in relation to reality) model and flow 
scaling, is based on similarity analysis, which gives similarity criteria of objects and flows 
between model and real scale. Reliable experiments can be conducted, only when similarity 
criteria are fulfilled. 

Through the years, the most common techniques used in wind tunnels were: 
 Hot-wire anemometers (thermo-anemometers) measurements. They are used to 

measure the instantaneous velocity of flow in one or two (sometimes three) direc-
tions. Measurements with the use of hot-wire anemometers were made by e.g. Bar-
toli et al. (2006), Kim and Han (2011), Pozzuoli et al. (2013), Błazik-Borowa et al. 
(2011), Bęc et al. (2011). 

 Pressure measurements. Pressure taps are mounted on the surface of the object and 
then connected by thin tubes to the pressure transducer, which is placed outside the 
model, or even outside the tunnel. The transducer measures pressure difference be-
tween the pressure tap placed on the building surface and the reference pressure 
tap. Recently, pressure measurements were performed by e.g. Aly (2013), Rizzo 
(2012), Elsharawy et al. (2015), Yi and Li (2015), Bell et al. (2016), Taylor et al. 
(2014), Cluni et al. (2011), Pozzuoli et al. (2013), Hu et al. (2015), Kim et al. 
(2015), Šarkić et al. (2015), Lipecki (2015), Lipecki and Jamińska (2012). 

 Force measurements on force balance. The force balance allows for direct meas-
urement of components of the global aerodynamic force and moment. The force 
balance is equipped with the set of strain gauges in the specific arrangement. On 
the basis of the stresses in the force balance elements, calculated from the strain 
gauges measurements, global forces and moments acting on the model are derived. 
Such technique was used by e.g. Aly (2013), Yi and Li (2015), Cluni et al. (2011), 
Šarkić et al. (2015), Letchford et al. (2016). 

 Measurements of displacements, velocities and accelerations. There are various 
types of sensors that can measure displacements, velocities or accelerations (in one, 
two or three directions). Such devices are useful, for example in vibrations fre-
quency measurements, and are used mainly for aeroelastic models. Accelerations 
were measured by e.g. Bęc et al. (2013). 

 Flow visualization. Visualization is used mainly to study the flow around objects. 
There are different methods of flow visualization, they could be very simple, like: 
threads, powdered pigments, smoke, or more advanced, like: smoke or airborne 
particles which are accompanied by photographs of laser-lighted planes. Flow visu-
alization was used by e.g. in Ozmen et al. (2016), Bell et al. (2016), Hu et al. 
(2015), Afshin et al. (2016). 

As more recent and developed techniques used in wind tunnels, the following can be 
listed: 

 Laser Doppler Velocimetry – LDV (Laser Doppler Anemometry – LDA). This 
technique uses laser to measure the velocity in the flow. The LDA uses the Doppler 
effect – shift in the light frequency emitted by the source (in this case, the laser) and 
registered by the observer. It requires markers in the form of particles in the flow. 
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LDA was recently used e.g., by: Kim and Han (2011), Carpentieri and Robins 
(2015). 

 Particle Image Velocimetry (PIV). It is another technique used to measure the flow 
velocity. Similarly, as in the LDA, it requires particles floating in the flow. In the 
PIV, two pictures one after another are taken and the distance over which particles 
migrated in this short period of time is calculated. Thanks to its broad potential, 
PIV is more often used recently, e.g., by: Taylor et al. (2014), Oguma et al. (2013), 
Jin et al. (2015). 

The wide review of existing wind tunnel techniques used mainly for pedestrian wind 
comfort was recently made by Blocken et al. (2016). 

Last years brought new opportunities to wind action measurements. The Wall of Wind 
(WOW), Florida, USA, is the battery of large fans which allows to perform simulations in 
the real scale or in the intermediate scale between full and model (for instance 1:10). It is 
mainly used for tests connected to hurricanes or wind-driven rain impact on structures 
(Mooneghi et al., 2014, Blessing et al., 2009, Beheru et al., 2014, Aly et al., 2012, Habte 
et al., 2015). In 2011, next to the existing tunnels in the University of Western Ontario, a 
special wind tunnel for tornadoes, and downbursts accompanying hurricanes, was created – 
The Wind Engineering, Energy and Environment Research Institute, so-called WindEEE 
(Refan et al., 2014, 2016). 

3.3. Numerical simulation 
Computational Wind Engineering (CWE) and Computational Fluid Dynamics (CFD) 

consist of various types of flow numerical simulations, objects-flow interactions, etc. When 
talking about CWE one can consider, for example, the simulation of the wind field as the 
stochastic process. CFD focuses on simulations of turbulent flows around different 
structures. Recently, the wide summary of CFD past and current achievements, as well as 
future challenges in wind engineering applications, was described by Blocken (2014).  

There are numerous methods which allow to perform simulations of turbulent flows 
(corresponding to atmospheric flows). CFD methods, adopting different flow models, are: 
DNS (Direct Numerical Simulation), RANS (Reynolds-Averaged Navier-Stokes), LES 
(Large Eddy Simulation), DVM (Discrete Vortex Method). Results obtained in wind 
engineering and building aerodynamics simulations are still not clear and must be based on 
extensive theoretical knowledge. Therefore, CFD simulations are usually accompanied by 
model or in situ tests, and the results apply only to the analysed case. Numerical simulations 
still need to be validated experimentally. Computer simulations are relatively not expensive, 
but due to the validation necessity, costs can increase dramatically. The large advantage of 
CFD is that after validation of one case, other cases, e.g. associated with the changes of the 
angle of wind attack, could be also computed. Graphical summary of methods with respect 
to the accuracy, the speed of operation and the associated costs, is represented by the 
diagram shown in Fig. 10.  

While conducting CFD analyses, a special attention should be paid to several recom-
mendations, use of which will increase the correctness of obtained results. The most 
important of them are: 

1. For all methods based on grid discretization, the final calculations should be pre-
ceded by a grid sensitivity analysis. The correct solution should be grid-independent. 

2. The results of simulations should be carefully checked on the basis of model or in-
situ experiments, or in the absence of such results, on the basis of the literature. Up to the 
present moment, considerable database of flows around single buildings, or systems of 
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LDA was recently used e.g., by: Kim and Han (2011), Carpentieri and Robins 
(2015). 
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velocity. Similarly, as in the LDA, it requires particles floating in the flow. In the 
PIV, two pictures one after another are taken and the distance over which particles 
migrated in this short period of time is calculated. Thanks to its broad potential, 
PIV is more often used recently, e.g., by: Taylor et al. (2014), Oguma et al. (2013), 
Jin et al. (2015). 

The wide review of existing wind tunnel techniques used mainly for pedestrian wind 
comfort was recently made by Blocken et al. (2016). 

Last years brought new opportunities to wind action measurements. The Wall of Wind 
(WOW), Florida, USA, is the battery of large fans which allows to perform simulations in 
the real scale or in the intermediate scale between full and model (for instance 1:10). It is 
mainly used for tests connected to hurricanes or wind-driven rain impact on structures 
(Mooneghi et al., 2014, Blessing et al., 2009, Beheru et al., 2014, Aly et al., 2012, Habte 
et al., 2015). In 2011, next to the existing tunnels in the University of Western Ontario, a 
special wind tunnel for tornadoes, and downbursts accompanying hurricanes, was created – 
The Wind Engineering, Energy and Environment Research Institute, so-called WindEEE 
(Refan et al., 2014, 2016). 

3.3. Numerical simulation 
Computational Wind Engineering (CWE) and Computational Fluid Dynamics (CFD) 

consist of various types of flow numerical simulations, objects-flow interactions, etc. When 
talking about CWE one can consider, for example, the simulation of the wind field as the 
stochastic process. CFD focuses on simulations of turbulent flows around different 
structures. Recently, the wide summary of CFD past and current achievements, as well as 
future challenges in wind engineering applications, was described by Blocken (2014).  

There are numerous methods which allow to perform simulations of turbulent flows 
(corresponding to atmospheric flows). CFD methods, adopting different flow models, are: 
DNS (Direct Numerical Simulation), RANS (Reynolds-Averaged Navier-Stokes), LES 
(Large Eddy Simulation), DVM (Discrete Vortex Method). Results obtained in wind 
engineering and building aerodynamics simulations are still not clear and must be based on 
extensive theoretical knowledge. Therefore, CFD simulations are usually accompanied by 
model or in situ tests, and the results apply only to the analysed case. Numerical simulations 
still need to be validated experimentally. Computer simulations are relatively not expensive, 
but due to the validation necessity, costs can increase dramatically. The large advantage of 
CFD is that after validation of one case, other cases, e.g. associated with the changes of the 
angle of wind attack, could be also computed. Graphical summary of methods with respect 
to the accuracy, the speed of operation and the associated costs, is represented by the 
diagram shown in Fig. 10.  

While conducting CFD analyses, a special attention should be paid to several recom-
mendations, use of which will increase the correctness of obtained results. The most 
important of them are: 

1. For all methods based on grid discretization, the final calculations should be pre-
ceded by a grid sensitivity analysis. The correct solution should be grid-independent. 

2. The results of simulations should be carefully checked on the basis of model or in-
situ experiments, or in the absence of such results, on the basis of the literature. Up to the 
present moment, considerable database of flows around single buildings, or systems of 

buildings was created. The process of comparing the results of simulations and tests is 
called validation. Verification, however, refers e.g. to checking if the correct mathematical 
model was used in the phenomenon description, or to checking the correctness of the 
program code. (Gousseau et al., 2013). 

3. Numerical simulations should be carried out in accordance with the guidelines de-
scribed thoroughly in the literature. The guidelines are based on calculations accurately 
validated with experimental results. They relate mainly to the size of the computational 
domain and the distance between the model and domain walls, the number of cells used 
along model edges, etc. The most detailed guidelines for CFD study were presented, among 
other papers, by Franke et al., 2007, 2011, Yoshie et al., 2007, Tominaga et al., 2008, 
Tamura et al., 2008. 

 
Fig. 10. Relations between methods of solving N-S and continuity equations 

The topics most frequently considered in CFD deal with: atmospheric boundary layer 
simulations, bluff body aerodynamics, pedestrian-level wind conditions, air pollutant 
dispersion, flow over complex terrain, ventilation of buildings, wind-driven rain, snow 
distribution, wind loads on buildings and structures, assessment of wind farms localization, 
aerodynamics of wind turbines, road vehicle aerodynamics, trains aerodynamics, windborne 
flying debris, sport aerodynamics, etc. 

4. Current and future issues in wind engineering 

The review of recent major topics, undertaken by wind engineering and structure aer-
odynamics, was made on the basis of the papers published recently, and on the basis of 
presentations showed during the most important "wind" conferences. The main journal 
which deals with the subject is Journal of Wind Engineering and Industrial Aerodynamics. 
The division of main topics of all papers published in JWEIA since 2013 till April, 2016 is 
compiled in Table 1. Of course, this division is subjective, because in some papers several 
issues were considered. For example, the development of CFD techniques is presented with 
the case study related to the cable-stayed bridge or wind turbine, wind loads on roofs are 
calculated for atmospheric boundary layer as well as for tornado or hurricane, wind 
structure is described in details on the occasion of wind loads estimation for different 
structures, etc. Each paper was classified to one topic only, what gave the overall view on 
major topics. The great majority of papers included: wind tunnel tests, full-scale tests or 
CFD studies performed for the given structure or the group of structures. In every case, 
numerical simulations were validated with respect to wind tunnel or full-scale tests.  
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There are six major conferences related to wind engineering field of study. These are: 
International Conference on Wind Engineering (ICWE14, every 4 years, last – 14th in 
Brazil, 2015), European & African Conference on Wind Engineering (EACWE6, every 4 
years, last – 6th in UK, 2013), Asia-Pacific Conferences on Wind Engineering (APCWE8, 
every 4 years, last – 8th in India, 2013), American Conference on Wind Engineering 
(ACWE12, every 4 years, last – 12th in USA, 2013), International Symposium on 
Computational Wind Engineering (CWE6, every 4 years, last – 6th in Germany, 2014), 
International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7, every 4 
years, last – 7th in China, 2012). The division of topics mentioned during last conferences, 
similar to the division presented above, is collected in Table 2. Since many more issues 
were addressed, the additional topics were added. 

Table 1. Review of topics published in JWEIA in period 2013 – April, 2016 
Topic 2013 2014 2015 2016 
Flow over complex terrain, terrain local topography 2 2 6 1 
Wind field description, wind structure, modelling of wind in CFD 17 12 11 7 
Extreme winds, typhoons, cyclones, hurricanes, downbursts 8 9 13 4 
Tornadoes  3 2 6 2 
Circular, elliptic, oval cross-sections (cylinders), also cables 7 7 5 1 
Bridges, pylons, decks, flutter 11 17 12 1 
Square, rectangular cross-sections, prisms, low-rise buildings 6 13 13 3 
Roofs  6 6 9 3 
High-rise buildings 6 4 8 1 
Interference, shielding effect, arrays of buildings 3 1 6 1 
Towers, masts, chimneys, lattice structures - 3 3 1 
Uncommon structures (e.g. domes, tanks, monument structures, cooling 
towers, road signs, windbreakers, membrane structures, scaffoldings, air-
cushion vehicles, etc.) 

4 8 7 - 

Transmission lines - 1 - - 
Subway, road, rail tunnels 1 - 3 - 
Porous media 2 3 - - 
Dampers and damping 3 1 1 - 
Vibration comfort in buildings, thermal comfort in buildings, human body 
reaction to vibrations 

2 3 - - 

Railway aerodynamics, high-speed trains, trains 5 10 12 2 
Road vehicles aerodynamics, trucks 5 6 11 2 
Wind energy, wind farms, wind turbines, airfoils 32 25 40 9 
Solar collectors, panels, farms 8 4 3 - 
Pedestrian level wind comfort, smoke dispersion, pollutant dispersion, 
ventilation in urban areas 

6 1 4 1 

Rain load, wind-driven rain 3 4 5 - 
Snow-wind load  - - 1 - 
Ice load, accretion 1 - 1 - 
Forests, trees, vegetation 2 1 1 - 
Windborne flying debris - 1 2 - 
Standards and codes - 3 - - 
Sport aerodynamics - 2 2 - 
Sail aerodynamics - - 1 - 
Other (e.g. CFD theory, CFD development, CFD grid verification, wind 
tunnel description, wind engineering review, etc.) 

3 5 8 - 
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years, last – 6th in UK, 2013), Asia-Pacific Conferences on Wind Engineering (APCWE8, 
every 4 years, last – 8th in India, 2013), American Conference on Wind Engineering 
(ACWE12, every 4 years, last – 12th in USA, 2013), International Symposium on 
Computational Wind Engineering (CWE6, every 4 years, last – 6th in Germany, 2014), 
International Colloquium on Bluff Body Aerodynamics and Applications (BBAA7, every 4 
years, last – 7th in China, 2012). The division of topics mentioned during last conferences, 
similar to the division presented above, is collected in Table 2. Since many more issues 
were addressed, the additional topics were added. 

Table 1. Review of topics published in JWEIA in period 2013 – April, 2016 
Topic 2013 2014 2015 2016 
Flow over complex terrain, terrain local topography 2 2 6 1 
Wind field description, wind structure, modelling of wind in CFD 17 12 11 7 
Extreme winds, typhoons, cyclones, hurricanes, downbursts 8 9 13 4 
Tornadoes  3 2 6 2 
Circular, elliptic, oval cross-sections (cylinders), also cables 7 7 5 1 
Bridges, pylons, decks, flutter 11 17 12 1 
Square, rectangular cross-sections, prisms, low-rise buildings 6 13 13 3 
Roofs  6 6 9 3 
High-rise buildings 6 4 8 1 
Interference, shielding effect, arrays of buildings 3 1 6 1 
Towers, masts, chimneys, lattice structures - 3 3 1 
Uncommon structures (e.g. domes, tanks, monument structures, cooling 
towers, road signs, windbreakers, membrane structures, scaffoldings, air-
cushion vehicles, etc.) 

4 8 7 - 

Transmission lines - 1 - - 
Subway, road, rail tunnels 1 - 3 - 
Porous media 2 3 - - 
Dampers and damping 3 1 1 - 
Vibration comfort in buildings, thermal comfort in buildings, human body 
reaction to vibrations 

2 3 - - 

Railway aerodynamics, high-speed trains, trains 5 10 12 2 
Road vehicles aerodynamics, trucks 5 6 11 2 
Wind energy, wind farms, wind turbines, airfoils 32 25 40 9 
Solar collectors, panels, farms 8 4 3 - 
Pedestrian level wind comfort, smoke dispersion, pollutant dispersion, 
ventilation in urban areas 

6 1 4 1 

Rain load, wind-driven rain 3 4 5 - 
Snow-wind load  - - 1 - 
Ice load, accretion 1 - 1 - 
Forests, trees, vegetation 2 1 1 - 
Windborne flying debris - 1 2 - 
Standards and codes - 3 - - 
Sport aerodynamics - 2 2 - 
Sail aerodynamics - - 1 - 
Other (e.g. CFD theory, CFD development, CFD grid verification, wind 
tunnel description, wind engineering review, etc.) 

3 5 8 - 

Table 2. Review of topics presented during last major conferences in wind engineering 
Topic a) b) c) d) e) f) 
Flow over complex terrain, terrain local topography 3 2 1 1 6 5 
Wind field description, wind structure, modelling of wind in 
CFD, wind characteristics measurements 

9 13 10 14 31 39 

Extreme winds, typhoons, cyclones, hurricanes, downbursts, 
wind storms, wind hazard assessment, wind vulnerability and 
risks 

8 4 36 17 3 52 

Tornadoes  2 - 12 2 2 12 
Circular, elliptic, oval cross-sections (cylinders), also cables 9 5 2 3 4 13 
Bridges, pylons, decks, flutter 49 24 26 17 17 46 
Square, rectangular cross-sections, prisms, low-rise, medium-
rise buildings 

32 11 7 11 11 40 

Roofs, large-span roofs, stadium roofs 10 4 13 10 3 24 
High-rise buildings 11 9 15 14 8 37 
Interference, shielding effect, arrays of buildings 8 6 3 10 - 12 
Towers, masts, chimneys, lattice structures, cranes, slender 
structures 

2 2 - 8 1 14 

Uncommon structures (e.g. domes, tanks, monument structures, 
cooling towers, road signs, membrane structures, scaffoldings, 
air-cushion vehicles, helicopters, inflatable structures, air-
cooler condensers windshields, traffic light structures, cyclone 
shelters, spiked cross-sections, lighting poles, silo, pyramids, 
etc.) 

13 7 8 5 7 11 

Transmission lines 1 1 1 2 4 9 
Subway, road, rail tunnels - 1 - - 2 - 
Porous media, permeable elements 3 - - 1 - 3 
Dampers and damping 1 6 2 4 2 7 
Vibration comfort in buildings, thermal comfort in buildings, 
human body reaction to vibrations, ventilation in buildings, 
internal pressure in buildings 

- 4 1 4 9 4 

Railway aerodynamics, high-speed trains, trains 5 6 1 1 4 2 
Road vehicles aerodynamics, trucks 5 2 - 2 2 5 
Wind energy, wind farms, wind turbines, airfoils 1 10 21 23 17 33 
Solar collectors, panels, farms, panel arrays, photovoltaic 
systems 

1 4 6 4 2 11 

Pedestrian level wind comfort, smoke dispersion, pollutant 
dispersion, ventilation in urban areas, traffic pollution, thermal 
environment, street canyons 

12 10 3 5 34 21 

Rain load, wind-driven rain 3 - 1 - 2 9 
Snow-wind load, snow drifts, snow particles - 2 - 2 3 3 
Ice load, accretion 1 4 1 1 - 6 
Forests, trees, vegetation 4 - - - 4 2 
Windborne flying debris 1 - 5 2 1 1 
Standards and codes - 6 11 1 - 5 
Sport aerodynamics 1 2 - - - - 
Sail aerodynamics - 2 - - 2 - 
Other (e.g. CFD theory, CFD development, CFD grid 
verification, wind tunnel description, wind engineering review, 
measurement techniques, terminology etc.) 

5 10 12 13 27 30 

 columns description:  a) BBAA7, 2012, b) EACWE6, 2013, c) ACWE12, 2013,  
d) APCWE8, 2013, e) CWE6, 2014, f) ICWE14, 2015 
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The largest number of published papers was devoted to wind energy. The field of 
wind energy is wide and it is connected with optimization of airfoils and wind turbines. 
Many of articles referred to CFD simulations and wind tunnel measurements of different 
types of wind turbines: with horizontal (HAWT) and vertical (VAWT) axis. Large wind 
farms consisting of clusters of wind turbines were also investigated. Some papers also 
considered the possible localization of wind farms with respect to energy harvest. More 
frequently FSI (fluid-structure interaction) and transient numerical simulations were used as 
the main tool of analyses. 

The methods of wind field description are still being developed. Modern measurement 
techniques allow to perform more exact measurements of wind characteristics in atmospheric 
boundary layer (ABL). Both, the results of measurements in microscale (less than 2 km), as 
well as in macroscale (synoptic scale, several hundreds of km) are used in wind engineering. 
Description of the wind field as the non-Gaussian process is applied to downbursts and is 
currently being developed. Numerical methods of simulation of Gaussian and non-Gaussian 
type processes are being expanded. Another problem is connected to the correct implementa-
tion of ABL to wind tunnel measurements and to CFD simulations. Whereas, the first matter is 
rather well known (but still needs investigation), the second is currently under strong interest of 
researchers. The proper representation of ABL, both in wind tunnels and in numerical domain, 
results in simulations with the conditions closer to the reality.  

Bridges, as one of the most spectacular structures, and moreover – structures which eve-
ry year are designed with larger spans, and for which wind action could be a dimensioning 
load, are under continuous attention of wind engineers. Different models of flatter and 
buffeting load are developed. Full-scale and wind tunnel results, as well as CFD calculations 
(sometimes all three experiments together) were presented for various cable-stayed bridges, 
suspension bridges, footbridges, etc. Optimization of a bridge deck was also investigated.  

Many papers dealt with bluff body aerodynamics. Wind tunnel tests concerned flow 
around circular, square, rectangular 2D cross-sections as well as 3D prisms of different 
cross-sections. Several papers considered bridge cables of circular cross-section, galloping 
phenomena of slender elements, etc. The low-rise and medium-rise buildings, which shapes 
are predominantly rectangular or square, were also included in that topic. Various 
investigations such as measurements of wind field around buildings, pressures on the outer 
surfaces or wind impact on claddings were performed. 

Large emphasis was also put on extreme winds, like: cyclones, typhoons, tropical 
storms and tornadoes. Modelling of such extreme wind events concerned mainly down-
bursts, which precede thunderstorms, and also tornadoes in relation to their impact to the 
engineering structures. Nowadays, it is possible to model tornadoes in model scale (see 
WindEEE) as well as in CFD. There were also presented some data from full-scale 
monitoring of engineering structures, mainly of high-rise buildings during extreme wind 
events. Another very important issues are: wind hazard assessment and wind vulnerability 
of structures. These topics are, in many regions of the world, crucial to local people and to 
strength of structures placed there.  

Many papers and conference presentations concerned roofs of various shapes. For the 
basic rectangular shapes, pressure distribution was investigated, sometimes with respect to 
so-called conical vortices – vortices which cause large suction on the roof, close to its edge. 
Surface pressures and the influence of parapets or attics on the flow over the roof were also 
considered. Different shapes of rectangular roofs, for example stepped roofs, were checked 
in wind tunnels, full scale or in CFD. Practical problems like different kinds of linings, 
green roofs with gardens on the top of high-rise buildings, etc. were analysed. Large span 
roofs over halls or stadiums were measured and also calculated in CFD.  
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Many of articles referred to CFD simulations and wind tunnel measurements of different 
types of wind turbines: with horizontal (HAWT) and vertical (VAWT) axis. Large wind 
farms consisting of clusters of wind turbines were also investigated. Some papers also 
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Description of the wind field as the non-Gaussian process is applied to downbursts and is 
currently being developed. Numerical methods of simulation of Gaussian and non-Gaussian 
type processes are being expanded. Another problem is connected to the correct implementa-
tion of ABL to wind tunnel measurements and to CFD simulations. Whereas, the first matter is 
rather well known (but still needs investigation), the second is currently under strong interest of 
researchers. The proper representation of ABL, both in wind tunnels and in numerical domain, 
results in simulations with the conditions closer to the reality.  

Bridges, as one of the most spectacular structures, and moreover – structures which eve-
ry year are designed with larger spans, and for which wind action could be a dimensioning 
load, are under continuous attention of wind engineers. Different models of flatter and 
buffeting load are developed. Full-scale and wind tunnel results, as well as CFD calculations 
(sometimes all three experiments together) were presented for various cable-stayed bridges, 
suspension bridges, footbridges, etc. Optimization of a bridge deck was also investigated.  

Many papers dealt with bluff body aerodynamics. Wind tunnel tests concerned flow 
around circular, square, rectangular 2D cross-sections as well as 3D prisms of different 
cross-sections. Several papers considered bridge cables of circular cross-section, galloping 
phenomena of slender elements, etc. The low-rise and medium-rise buildings, which shapes 
are predominantly rectangular or square, were also included in that topic. Various 
investigations such as measurements of wind field around buildings, pressures on the outer 
surfaces or wind impact on claddings were performed. 

Large emphasis was also put on extreme winds, like: cyclones, typhoons, tropical 
storms and tornadoes. Modelling of such extreme wind events concerned mainly down-
bursts, which precede thunderstorms, and also tornadoes in relation to their impact to the 
engineering structures. Nowadays, it is possible to model tornadoes in model scale (see 
WindEEE) as well as in CFD. There were also presented some data from full-scale 
monitoring of engineering structures, mainly of high-rise buildings during extreme wind 
events. Another very important issues are: wind hazard assessment and wind vulnerability 
of structures. These topics are, in many regions of the world, crucial to local people and to 
strength of structures placed there.  

Many papers and conference presentations concerned roofs of various shapes. For the 
basic rectangular shapes, pressure distribution was investigated, sometimes with respect to 
so-called conical vortices – vortices which cause large suction on the roof, close to its edge. 
Surface pressures and the influence of parapets or attics on the flow over the roof were also 
considered. Different shapes of rectangular roofs, for example stepped roofs, were checked 
in wind tunnels, full scale or in CFD. Practical problems like different kinds of linings, 
green roofs with gardens on the top of high-rise buildings, etc. were analysed. Large span 
roofs over halls or stadiums were measured and also calculated in CFD.  

Wind action is dominant in case of high-rise buildings and cannot be neglected. In 
their case, different combinations of load should be investigated (sometimes crosswind load 
connected with torsional load could be larger than along-wind load). Modern high-rise 
buildings are almost always of complicated shapes, based on basic rectangles or ovals. They 
may have corner modifications, be tilted, tapered, helical, have setbacks, openings or 
combine various features. It makes every of them a unique structure, vulnerable to the wind 
load, and that is why they must be modelled and examined in wind tunnel tests. 

From the point of view of urban planning and people living in existing settlements, a 
very important issue is wind comfort at pedestrian level. It is connected to the wind speed 
which can accelerate significantly in flow contractions (such as those between buildings). 
The topic of pedestrian comfort is also connected to dispersion of snow during winters, or 
dispersion of smoke, gases and pollutants all over the year, or to the natural ventilation of 
the given area. The pollutant dispersion could be analysed in the scale of the building and 
its nearest surroundings (for example smoke from the chimney on the building roof) or in 
the scale of the district or even the whole city. Nowadays, CFD simulations play the major 
role in investigations of pedestrians wind comfort and pollutant dispersion.  

Recently, mainly in journal papers, issues connected to road and rail aerodynamics 
arose. This topic concerns optimization of the aerodynamic shape of road and rail vehicles. 
Another topic relates to high-speed trains (introduced in many countries in last decade), 
their shape, but also their impact on the passengers and the vicinity. More frequently, some 
papers about coupling between vibrations of the structure (for example of the bridge), 
traffic and wind action were published. These problems can be investigated theoretically or 
with use of numerical methods, or experimentally. The possibility of the freight railway 
wagons to roll-over in strong winds was also the matter of interest in recent papers. 

Another subject connected with cities and urban planning is an interference phenome-
non. It could be interference between high-rise buildings in different configurations, but 
also between circular hangers of the bridge placed one by one. The influence of the high-
rise building on the roof of the medium-rise building placed nearby, was also the point of 
interest of some researchers. Sometimes, the effect of the windward structure on the leeward 
structure is called shielding effect. 

In the civil engineering structures, the group of slender vertical objects containing: 
towers, chimneys, masts, lattice towers and cranes was distinguished. Different aspects of 
wind loads, and different aerodynamic phenomena which appear for these objects, were 
examined in full-scale, model scale or numerically. 

Other engineering structures were grouped as uncommon structures. Papers in this 
group dealt with large structures like domes of various curves, tanks and siloes, cooling 
towers, pyramids, monument brick structures, membrane structures like umbrellas, 
inflatable structures, etc. Wind action was also analysed for smaller objects like road signs, 
traffic lights structures, lighting poles, scaffoldings, cyclone shelters, road windshields, air-
cooler condensers or for uncommon vehicles like helicopters or air-cushion vehicles. The 
analyses were sometimes performed in full-scale, but more frequently in model scale in 
wind tunnels or with use of CFD. 

Four groups of other structures described a few times in papers and presentations were 
distinguished. They are tunnels, solar panels, porous structures and transmission lines. 
Different experiments with road or rail tunnels were carried out, they included fire 
propagation, car exhaust propagation, ventilation, etc. Solar panels are another green source 
of energy beside wind farms. Optimization of pitch angle of solar collectors, their 
localization on large span-roofs and spacing between collectors, or wind conditions in 
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terrains under solar farms, etc., were the main subjects of interest in this topic. Porous 
structures are mostly windbreakers placed along roads. The flow through such objects is 
different than in case of solid ones, and so the wind load is also different. Recently, CFD 
simulations also addressed this problem. Yet another group of structures are transmission 
lines and their supporting structures. Dynamic wind action and galloping of lines were main 
issues of investigations in this topic.  

Another part of wind engineering experiments describes flow over complex terrains. 
Mainly local changes in terrain topography such hills, edges, slopes and valleys were 
considered (usually investigated with use of CFD simulations). The main results obtained 
from such tests were wind speed multipliers. 

Codification of wind loads is still under elaboration. Calculations carried out accord-
ing to several standards often give significantly different results. Of course, it is mainly 
caused by local wind environment and different statistical tools used to describe wind 
characteristics. There are continuous works on improvements of the wind load description. 

The impact of wind on forests, vegetations, single trees and orchards was also taken 
under consideration. This issue is important mainly for windy places around the world with 
an intensive agriculture. Respective representation of trees was usually examined in model 
tests or CFD simulation.  

Damping (connected to structures and wind action) was another subject investigated by 
the researchers. Model tests give reasonable answer how dynamic properties of bridges, high-
rise buildings or other slender structures would change when dampers are assembled to the 
structure. In many places around the world, damping of the structure’s response to wind action 
connected with seismic action is one of the most important problems faced by civil engineers.  

Damping of structures is accompanied by another interesting question – how people in 
high-rise building will react on building vibrations? Full-scale tests of such comfort were 
performed in high-rise buildings or in special vibrating chambers (where real conditions are 
simulated). The response of the human body to vibrations was also examined. The internal 
wind comfort connected with thermal comfort and ventilation are another issues for building 
occupants. 

Environmental actions combined with wind action were also often investigated. This 
could be wind driven-rain and its impact on buildings. Rivulet or rivulets can form on the 
surfaces of inclined cables of masts or cable-stayed bridges. They change significantly the 
aerodynamic properties of the cross-section of the cable and make them susceptible to 
galloping. Recently, also CFD studies considered this problem. Another environmental 
action is caused by wind and snow. Accumulation of snow in windy conditions and 
transport of accumulated snow caused by wind action in terrain or on roofs (so-called 
snowdrifts) were widely examined by full-scale tests, model tests and CFD simulations. Yet 
another issue was ice load and ice accretion. Ice storms are relatively rare, but ice accretion 
on lattice structures, transmission lines or cables can cause dangerous behaviour of the 
structures and even lead to collapse. 

Windborne flying debris are another matter which was considered more frequently. 
Hurricanes, cyclones, tornadoes, and even strong (not extreme winds), can raise parts of 
elements or whole small elements from the ground and carry them. They can strike 
buildings and destroy their façades. This problem was studied in full-scale, and recently also 
in wind tunnels and with use of CFD. 

The relatively new issue for wind engineers is sport aerodynamics. Various experi-
ments on soccer balls, cyclists, ski jumpers or downhill runners were performed. More 
money is invested in sports, so the need of new investigations also appears. Sail aerodynam-
ic was also considered. 
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high-rise building will react on building vibrations? Full-scale tests of such comfort were 
performed in high-rise buildings or in special vibrating chambers (where real conditions are 
simulated). The response of the human body to vibrations was also examined. The internal 
wind comfort connected with thermal comfort and ventilation are another issues for building 
occupants. 

Environmental actions combined with wind action were also often investigated. This 
could be wind driven-rain and its impact on buildings. Rivulet or rivulets can form on the 
surfaces of inclined cables of masts or cable-stayed bridges. They change significantly the 
aerodynamic properties of the cross-section of the cable and make them susceptible to 
galloping. Recently, also CFD studies considered this problem. Another environmental 
action is caused by wind and snow. Accumulation of snow in windy conditions and 
transport of accumulated snow caused by wind action in terrain or on roofs (so-called 
snowdrifts) were widely examined by full-scale tests, model tests and CFD simulations. Yet 
another issue was ice load and ice accretion. Ice storms are relatively rare, but ice accretion 
on lattice structures, transmission lines or cables can cause dangerous behaviour of the 
structures and even lead to collapse. 

Windborne flying debris are another matter which was considered more frequently. 
Hurricanes, cyclones, tornadoes, and even strong (not extreme winds), can raise parts of 
elements or whole small elements from the ground and carry them. They can strike 
buildings and destroy their façades. This problem was studied in full-scale, and recently also 
in wind tunnels and with use of CFD. 

The relatively new issue for wind engineers is sport aerodynamics. Various experi-
ments on soccer balls, cyclists, ski jumpers or downhill runners were performed. More 
money is invested in sports, so the need of new investigations also appears. Sail aerodynam-
ic was also considered. 

There are always many papers and conference articles about theoretical development 
of the given problem. Recently, mainly CFD development is theoretically described, and 
concerns governing equations, methods of solutions or grid improvements in simulations. 
Systematically, the reviews of achievements of wind engineering or presentations of the new 
facilities for wind study, or new measurement techniques appeared. 

5. Conclusions 

This paper gives a short description of the bases of wind engineering and aerodynam-
ics of structures. Wind field characteristics, the flow around different bodies, governing 
equations and aeroelastic phenomena are also shortly explained. Three methods of 
investigations are described: full-scale tests, wind tunnel tests and CFD simulations. Finally, 
the review of the contemporary topics considered in the wind engineering is given. The 
number of published papers and given presentations during conferences is an indicator of 
the significance of the wind engineering topic.  

It seems that CFD techniques are in constant development. The computer power rises, 
new modelling methods appear and there are more and more case studies well validated 
with model or full-scale tests. More advanced CFD techniques like LES, DES or unsteady 
RANS give better results (better validation) of many wind engineering problems. Also full-
scale test are on rise because of new possibilities and more common monitoring of large 
structures. It seems that wind tunnel tests will remain on the same level as previously or 
their number will also rise. The major argument for this is that the measurement techniques 
in wind tunnel test are more diverse nowadays (e.g. PIV, LDA, etc.) and give more exact 
results. The necessity of CFD validation makes tunnel tests still a basic experimental tool in 
wind engineering. New wind facilities, like WOW or WindEEE, open the new perspectives 
for scientists. Moreover, the tendencies to build longer and higher, and to design structures 
of unexpected and futuristic shapes will definitely ensure the work to wind engineers. 

The very up-to-date problem is the risk evaluation of extreme wind events and the 
assessment of hazards connected to it. For engineers, the main purpose is to design 
structures resistant to even extreme winds. Such issues, like windborne flying debris or the 
description of non-Gaussian processes, associated with extreme winds, must be considered. 

The issue of green energy would develop more intensively in the next years, due to 
climate changes. In developed countries – there is a necessity to reduce various pollutions, 
in more poor countries – there is a need for cheaper energy. That is why different matters 
associated with wind and solar energy will be investigated even more frequently in the near 
future. 
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Streszczenie: W artykule opisane zostały aktualne zagadnienia, jakimi zajmuje się 
inżynieria wiatrowa i aerodynamika budowli. Skoncentrowano się głównie na aspektach 
związanych z aerodynamiką budowli. W pracy krótko przedstawiono podstawy teoretyczne, 
które należy uwzględnić przy przyjmowaniu obciążenia wiatrem. Następnie opisano trzy 
różne instrumenty badawcze służące do opisu obciążenia wiatrem: badania w skali 
rzeczywistej, badania w tunelach aerodynamicznych oraz symulacje komputerowe. Na 
zakończenie dokonano przeglądu aktualnych problemów podejmowanych przez inżynierię 
wiatrową.    

Słowa kluczowe: inżynieria wiatrowa, aerodynamika, badania w tunelach aerodyna-
micznych, Obliczeniowa Mechanika Płynów, badania w skali rzeczywistej. 
 




