Research of the collapsibility of the European loess – review

Agnieszka Lal1
1Department of Geotechnical Engineering; Faculty of Civil Engineering and Architecture; Lublin University of Technology
https://orcid.org/0000-0002-3557-6064

© 2019 Budownictwo i Architektura. Publikacja na licencji Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0)

Cytowanie: Budownictwo i Architektura, 18(1) (2019) 005-010, ISSN 1899-0665, DOI: 10.24358/Bud-Arch_19_181_01

Historia:
Opublikowano: 27-05-2019

Streszczenie:

Foundation of the buildings on the loessial soil is often associated only with difficulties resulting from the possibility of the collapse of the ground. For these reason, loess is too often unfairly disqualified as the construction subsoil in spite of its good strength and strain parameters. Thanks to continuous development of research and publications of the results, reliable data regarding loess are spread and, as a consequence, loess becomes more and more common soil used in the geotechnical
engineering.
Loess collapsibility has been studied since the middle of the 20th century, nevertheless, only the computer techniques and specialist laboratory and microstructural tests, that have been developed from the end of last century, helped us to find an answer to the important questions regarding the occurrence of this phenomenon. Detailed mechanisms that cause sudden loess volumetric reduction due to humidity and load, and the elements that affects the collapsibility are still studied. Furthermore, varied technics are researched, including in-situ tests, which allow estimating the risk of collapse, as well as the methods of its elimination.
The aim of this paper is to systematize the directions of current studies of European loess collapsibility and to indicate their most significant results. The review was made on the basis of the scientific publications published in the Polish and international journals as well as the Journal Citation Reports (JCR) Web of Science database.

Słowa kluczowe:

loess, collapsibility, soil structure, in-situ test, laboratory test


Research of the collapsibility of the European loess – review

Abstract:

Foundation of the buildings on the loessial soil is often associated only with difficulties resulting from the possibility of the collapse of the ground. For these reason, loess is too often unfairly disqualified as the construction subsoil in spite of its good strength and strain parameters. Thanks to continuous development of research and publications of the results, reliable data regarding loess are spread and, as a consequence, loess becomes more and more common soil used in the geotechnical
engineering.
Loess collapsibility has been studied since the middle of the 20th century, nevertheless, only the computer techniques and specialist laboratory and microstructural tests, that have been developed from the end of last century, helped us to find an answer to the important questions regarding the occurrence of this phenomenon. Detailed mechanisms that cause sudden loess volumetric reduction due to humidity and load, and the elements that affects the collapsibility are still studied. Furthermore, varied technics are researched, including in-situ tests, which allow estimating the risk of collapse, as well as the methods of its elimination.
The aim of this paper is to systematize the directions of current studies of European loess collapsibility and to indicate their most significant results. The review was made on the basis of the scientific publications published in the Polish and international journals as well as the Journal Citation Reports (JCR) Web of Science database.

Keywords:

loess, collapsibility, soil structure, in-situ test, laboratory test


Literatura / References:

[1] Tungsheng L., Loess and the Environment, Beijing: China Ocean Press, p. 1–481, 1985.
[2] Dylik J., Zagadnienie genezy lessu w Polsce, Biuletyn Peryglacjalny, vol. 1, p. 19–30, 125–131, 1954.
[3] Smalley I. J., „In-situ” theories of loess formation and the significance of the calcium-carbonate content of loess, Earth Science Reviews, vol. 7, no.  2, p. 67–85, 1971. DOI: 10.1016/0012-8252(71)90082-1
[4] Pye K., Aeolian dust and dust deposits. 1987.
[5] Grabowska-Olszewska B., Wiązania strukturalne w lessach i ich wpływ na osiadanie zapadowe, p. 65–69.
[6] Jahn A., Less , jego pochodzenie i związek z klimatem epoki lodowej, vol. 1, 1919.
[7] Kriger N. J., Less, jego swojstwa i swiaz’ s gieograficzieskoj sriedoj. 1965.
[8] Różycki S. Z., Pyłowe utwory typu lessowego na świecie ich występowanie i geneza, StudiaGeol. Polonica, vol. LXXXV, p. 193, 1986.
[9] Lysenko M., V. V.Dokuchayev i lessovaya problema, Pochvovedemye, vol. 7, p. 59–67, 1956.
[10] Obruchev V. Λ., Loess as a particular kind of soil, its genesis and the tasks of its investigation, Byulleten’ Kommissii po Izucfteniyit Chetverlichnogo Periods, vol. 12, p. 5–17, 1948.
[11] Łoziński W., „Die periglaziale Fazics der mechanischen Verwitterung”, [in:] Compte Rendu de la XI :e Session du Congrès Géologique Internationale, 1912, p. 1039–1053.
[12] Geikie J., The tundras and steppes of prehistoric Europe, Scottish Geographical Magazine, vol. 14, no.  6, p. 281–294, 1898.
[13] Berg L. S., Loess as a product of weathering and soil formation. 1960.
[14] Gansen R., Die Entstehung und Herkunft des Löss. 1922.
[15] Richthofen F., China. 1877.
[16] Hoobs W. H., The glacial anticyclones and the European continental glacier, American Journal of Science, vol. 241, no.  4, p. 333–336, 1943.
[17] Soergel W., Lösse, Eiszeiten und paläolitische Kulturen. 1919.
[18] Maruszczak H., Definicja i klasyfikacja lessów oraz utworów lessopodobnych, Przeglad Geologiczny, vol. 48, no.  7, p. 580–586, 2000.
[19] Tutkowskyj P., Kvoprosu o sposobe obrazovaniy a lessa, Zemlevedeniye, vol. 6, no. 1–2, p. 213–311, 1899.
[20] Grahmann R., Der Löss in Europa. 1931.
[21] Pécsi M., Lösse und lössartige Sedimente im Karpatenbecken und ihre litostratigraphische Gliederung, Ptermanss Geographische Mitteilungen, vol. 110, p. 176-189; 241-252, 1966.
[22] Malinowski J., Badania geologiczno-inżynierskie lessów, 1971.
[23] Grabowska-Olszewska B., Osiadanie zapadowe lessów in: Przegląd Geologiczny, vol. 31, no.  3, p. 162–165, 1983.
[24] Stróżyk J., Charakterystyka ściśliwości gruntu pylastego, na przykładzie lessu z rejonu Wrocławia, Górnictwo i Geoinżynieria, vol. 1, p. 575–582, 2009.
[25] Nepelski K., Rudko M., Identyfikacja parametrów geotechnicznych lessów lubelskich na podstawie sondowań statycznych CPT, Przegląd Naukowy Inżynieria i Kształtowanie Środowiska, vol. 27, no.  2, p. 186–198, 2018.
[26] Nepelski K., Lal A., Franus M., Analiza wyznaczania konsystencji lessów lubelskich na podstawie wyników sondowań statycznych CPT, Budownictwo i Architektura, vol. 15, no.  4, p. 183–194, 2016, DOI: 10.24358/Bud-Arch_16_154_18
[27] Charles Wang Wai Ng, Hamed Sadeghi, S.K. Belal Hossen, C.F. Chiu, Eduardo E. Alonso S. B., Water retention and volumetric characteristics of intact and re-compacted loess, Canadian Geotechnical Journal, vol. 53, no.  8, p. 1258–1269, 2016. DOI: 10.1139/cgj-2015-0364
[28] Delage P., Cui Y. J., Antoine P., Geotechnical problems related with loess deposits in Northern France, Proceedings of International Conference on Problematic Soils, no. May, p. 517–540, 2005.
[29] Delage P., Geotechnical Problems Due To The Collapse Of Unsaturated Soils: The Case Of Loess From Northern France, Journal of Applied Engineering Science & Technology, vol. 1, no.  1, p. 17–22, 2014.
[30] Cui Y.-J., Terpereau J.-M., Marcial D., Delage P., Antoine P., Marchadier G., Ye W.-M., A geological and geotechnical characterisation of the loess of Northern France, Skempton Memorial Conference, 2004, p. 417–428.
[31] Knight K., The origin and occurrence of collapsing soils, Reg. African CSMFE (1), 1963, p. 127–130.
[32] Assallay A. M., Rogers C. D. F., Smalley I. J., Formation and collapse of metastable particle packings and open structures in loess deposits, Engineering Geology, vol. 48, no.  1–2, p. 101–115, 1997.
[33] Langroudi A. A., Micromechanics of collapse in loess, no. August, 2014.
[34] Langroudi A. A., Jefferson I., Collapsibility in calcareous clayey loess, International Journal of GEOMATE, vol. 5, no. 1, p. 620–627, 2013.
[35] Dobrescu C. F., Calarasu E. A., Ungureanu V. V, Engineering approach on stability assessment of loess soil structures considering basic geotechnical characteristics, vol. 9, no.  58, 2016.
[36] Dušan B., Zoran B., Čebašek V., Šušić N., Characterisation of collapsing loess by seismic dilatometer, Engineering Geology, vol. 181, p. 180–189,
2014.
[37] Santrač P., Bajić Ž., Grković S., Kukaras D., Hegediš I., Analysis of calculated and observed settlements of the silo on loess, Tehnicki vjesnik – Technical Gazette, vol. 22, no. 2, p. 539–545, 2015.
[38] Zourmpakis A., Boardman D. I., Rogers C. D. F., Jefferson I., Gunn D. A., Jackson P. D., Northmore K. J., Entwisle D. C., Nelder L. M., Dixon N., Case study of a loess collapse field trial in Kent, SE England, Quarterly Journal of Engineering Geology and Hydrogeology, vol. 39, no. 2, p. 131–150, May, 2006.
[39] Mahler A., Turi D., Vonza C., Evaluation of the collapsibility risk of loess based on oedometer test results, no. 1963, p. 135–139, 2011.
[40] Jefferson I., Rogers C., Evstatiev D., Karastanev D., Treatment of metastable loess soils: Lessons from Eastern Europe, Elsevier Geo-Engineering Book Series, vol. 3, no.  C. p. 723–762, 2005.
[41] Lutenegger A. J., Dynamic Compaction in Friable Loess, Journal of Geotechnical Engineering, vol. 112, no. 6. p. 663–667, 1986.
[42] Dumitru M., Geotechnical Testing for Certification of Loess Improvement By Dynamic Compaction, 5th International Young Geotechnical Engineers’ Conference, 2013.
[43] Bally J. R., Some specific problems of wetted loessial soils in civil engineering, Engineering Geology, vol. 25, no.  2–4. p. 303–324, 1988.
[44] Evstatiev D., Loess improvement methods, Engineering Geology, vol. 25, no. 2, p. 341–366, 1988.
[45] Tabarsa A., Latifi N., Meehan C. L., Manahiloh K. N., Laboratory investigation and field evaluation of loess improvement using nanoclay – A sustainable material for construction, Construction and Building Materials, vol. 158, p. 454–463, 2018.
[46] Baranova M., Maltsev A., Vasilyeva D., Environmental construction safety on loess soils in the coastal zone of reservoirs, vol. 02015, 2017.
[47] Fodor P., Kleb B., Engineering geological problems in loess regions of hungary, Quaternary International, vol. 24, no.  C, p. 25–30, 1994.
[48] Olyansky Y. I., Kuzmenko I. Y., Shchekochikhina E. V., Features of Construction Buildings on the Loessial Soil of Central Moldova, Procedia Engineering, vol. 150, p. 2208–2212, 2016.